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Abstract.- We study transitivity conditions on the norm of JB∗-triples, C∗-
algebras, JB-algebras, and their preduals. We show that, for the predual X of a
JBW ∗-triple, each one of the following conditions i) and ii) implies that X is a
Hilbert space. i) The closed unit ball of X has some extreme point and the norm
of X is convex transitive. ii) The set of all extreme points of the closed unit ball of
X is non rare in the unit sphere of X. These results are applied to obtain partial
affirmative answers to the open problem whether every JB∗-triple with transitive
norm is a Hilbert space. We extend to arbitrary C∗-algebras previously known
characterizations of transitivity [20] and convex transitivity [36] of the norm on
commutative C∗-algebras. Moreover, we prove that the Calkin algebra has convex
transitive norm. We also prove that, if X is a JB-algebra, and if either the norm
of X is convex transitive or X has a predual with convex transitive norm, then
X is associative. As a consequence, a JB-algebra with almost transitive norm is
isomorphic to the field of real numbers.

1.- Introduction

Throughout this paper X will denote a Banach space, S = S(X) and
B = B(X) will be the unit sphere and the closed unit ball of X, respectively,
and G = G(X) will stand for the group of all surjective linear isometries on
X. We recall that the norm of X is said to be transitive if, for every x, y
in S there exists F in G satisfying F (x) = y. The famous Banach-Mazur
”rotation” problem [1] is the following.

PROBLEM 1.1.- If X is separable, and if the norm of X is transitive,
is X a Hilbert space?

Examples of non Hilbert non separable Banach spaces with transitive
norm are known [31]. In fact, it follows from some constructive methods in
[27] and [19; Remark, p. 479] (see also [8]) that every Banach space can
be isometrically embedded into a Banach space with transitive norm. On
the other hand, it is worth to mention that Problem 1.1 has an affirmative
answer if the assumption of separability of X is strengthened to the one that
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X is finite-dimensional [31]. In this case, the answer remains affirmative
if the requirement of transitivity of the norm of X is relaxed to that of
almost transitivity or even convex transitivity (precise definitions of these
two concepts will be given in Sections 2 and 3, respectively). The reader
is referred to the book of S. Rolewicz [31] and the recent survey paper of
F. Cabello [9] for a comprehensive view of known results and fundamental
questions related to the Banach-Mazur rotation problem.

A big part of the literature dealing with transitivity conditions of the
norm centers its attention in the study of such conditions on the Banach
spaces CK

0 (L) (of all continuous K-valued functions which vanish at infinity
on the locally compact Hausdorff topological space L) and LK

1 (Γ, µ) (of all µ-
integrable K-valued functions on the localizable measure space (Γ, µ)). Here
K denotes either R or C. Today such classical Banach spaces have a wider
understanding in the setting of C∗-algebras (or even their non associative
generalisations, the JB∗-triples) and JB-algebras. Indeed, the CC

0 (L)-spaces
are nothing but the commutative C∗-algebras, and the LC

1 (Γ, µ)-spaces are
precisely the preduals of commutative W ∗-algebras. Analogously, the CR

0 (L)-
spaces and the LR

1 (Γ, µ)-spaces coincide with the associative JB-algebras
and the preduals of associative JBW -algebras, respectively.

Motivated by the ideas in the above comment, we study in this paper
transitivity conditions on the norm of JB∗-triples, JB-algebras, and their
preduals. Sometimes, in the wider setting we are considering, questions
and results attain a better formulation. For instance, the Wood conjecture
[36] that L is a singleton whenever CC

0 (L) has transitive norm becomes a
particular case of the more ambitious one that complex Hilbert spaces are
the unique JB∗-triples with transitive norm (Problem 2.1), and the result
in [20] that L is a singleton whenever CR

0 (L) has transitive norm follows
from the more general fact that R is the unique JB-algebra whose norm is
transitive (Corollary 5.4). The remaining part of the paper flows between
Problem 2.1 and Corollary 5.4 just mentioned.

Sections 2 and 3 deal with transitivity conditions on the norm of JB∗-
triples and preduals of JBW ∗-triples. It seems that the first work in this field
is the one of S. K. Tarasov [35], where it is shown that the Banach-Mazur
rotation problem has an affirmative answer in the class of JB∗-triples. We
rediscover this result, and prove that Problem 1.1 also answers affirmatively
in the class of preduals of JBW ∗-triples (Corollary 2.5). We also prove that,
if X is the predual of a JBW ∗-triple, and if either the set of all extreme
points of B is non rare in S or B has some extreme point and the norm of X
is convex transitive, then X is a Hilbert space (Theorems 3.2 and 3.1). These
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results allow us to improve Tarasov’s theorem, by showing that Problem 1.1
has an affirmative answer in the class of non associative generalisations of
complex L1-preduals (namely, the class of Banach spaces whose duals are
preduals of JBW ∗-triples).

Of course, the results for JB∗-triples reviewed above apply to C∗-alge-
bras, with the added value that C is the unique C∗-algebra which is also a
Hilbert space. Nevertheless, C∗-algebras have their own philosophy (consist-
ing mainly in their order structure), and, with that philosophy, transitivity
conditions on the norm get specially nice formulations. We devote Section
4 of the paper to this matter. We obtain characterizations of transitivity
and convex transitivity of the norm of a C∗-algebra which extend previously
known ones in [20] and [36], respectively, for the commutative case. More-
over, we prove that the norm of the Calkin algebra is convex transitive, thus
providing the first known example of a non commutative C∗-algebra whose
norm is convex transitive.

Finally, in Section 5 we show that, if X is a JB-algebra, and if either the
norm of X is convex transitive or X has a predual with convex transitive
norm, then X is associative (Theorem 5.3 and Proposition 5.2). Then the
result pointed out above that R is the unique JB-algebra with transitive
norm follows from [20].

2.- Transitivity conditions on the norm of JB∗-triples:
some first observations and comments

We recall that a complex Banach space X is said to be a JB∗-triple if it
is equipped with a continuous triple product {...} which is conjugate-linear
in the middle variable, linear and symmetric in the outer variables, and
satisfies the following two conditions.

i) D(a, b)D(x, y) −D(x, y)D(a, b) = D(D(a, b)(x), y) −D(x,D(b, a)(y))
for all a, b, x, y in X, where the operator D(a, b) : X → X is defined by
D(a, b)(x) := {abx} for all x in X.

ii) For every x in X, D(x, x) is hermitian with non negative spectrum
and satisfies ‖ D(x, x) ‖=‖ x ‖2.

JB∗-triples, introduced by W. Kaup [24], are of capital importance in
complex Analysis because their open unit balls are bounded symmetric do-
mains, and every bounded symmetric domain in a complex Banach space is
biholomorphically equivalent to the open unit ball of a suitable JB∗-triple
[25]. Every complex Hilbert space is a JB∗-triple under the triple product
defined by {xyz} := 1

2((x | y)z +(z | y)x). Now, it seems reasonable to raise
the following problem.
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PROBLEM 2.1.- If X is a JB∗-triple, and if the norm of X is transitive,
is X a Hilbert space?

A JBW ∗-triple is a JB∗-triple having a (complete) predual. Such a
predual is unique [2] in the strongest sense of the word: two preduals of a
JBW ∗-triple X coincide when they are canonically regarded as subspaces
of the dual X∗ of X. JBW ∗-triples are very abundant: the bidual of every
JB∗-triple X is a JBW ∗-triple under a suitable triple product which extends
the one of X [14]. The fact that every complex Hilbert space is the predual
of a JBW ∗-triple could invite us to consider the following question.

QUESTION 2.2.- If X is the predual of a JBW ∗-triple, and if the norm
of X is transitive, is X a Hilbert space?

Contrarily to what happens in relation to Problem 2.1 (which, as far
as we know, remains unanswered), it is known that, without additional
assumptions, the answer to Question 2.2 can be negative. To explain our
assertion by an example, let us recall that every C∗-algebra is a JB∗-triple
under the triple product {xyz} := 1

2(xy∗z + zy∗x). As a consequence, the
classical Banach spaces C0(L) (of all continuous complex-valued functions
which vanish at infinity on a locally compact Hausdorff topological space
L) and L∞(Γ, µ) (of all essentially bounded locally µ-measurable complex-
valued functions on a localizable measure space (Γ, µ)) are JB∗-triples and
JBW ∗-triples, respectively, in a natural way. The easiest known counter-
example to Question 2.2 is the following (see [31; Proposition 9.6.7] and
[19]). Let Γ be the disjoint union of an uncountable family of copies of the
closed real interval [0, 1], and let µ be the measure on Γ whose measurable
sets are those subsets A of Γ whose intersection with each such copy is
measurable relative to the Lebesgue measure, with µ(A) equal to the sum
of the measures of that intersections. Then the Banach space X := L1(Γ, µ)
is the predual of a JBW ∗-triple, is not a Hilbert space, and has transitive
norm.

The following lemma becomes a common tool to provide partial affirma-
tive answers to Problem 2.1 and Question 2.2.

LEMMA 2.3.- Let X be a JB∗-triple such that for all x in X the equality
{xxx} =‖ x ‖2 x holds. Then X is a Hilbert space.

Proof.- It is enough to show that the square of the norm of X is a real-
quadratic mapping, a fact that is shown to be true by arguing as in the
proof of [30; Lemma 1].
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Recall that the Banach space X is said to be smooth at a point e of
S if there is a unique f in S(X∗) satisfying f(e) = 1, and that X is called
smooth if it is smooth at every point of S. Note that, if L is a locally compact
Hausdorff topological space, and if C0(L) is smooth, then L is a singleton
(otherwise, by Uryson’s lemma, C0(L) would contain an isometric copy of the
non-smooth complex Banach space `2

∞). Now let X be a JB∗-triple. Since,
for e in S, the smallest closed subtriple of X containing e is isometrically
isomorphic to a JB∗-triple of the form C0(L) for some L as above [24], it
follows that, if X is smooth, then every element e in S is a tripotent (i.e.,
{eee} = e), and therefore the equality {xxx} =‖ x ‖2 x is true for every x in
X. In this way, by applying Lemma 2.3, we re-encounter the known result
[35] that complex Hilbert spaces are nothing but smooth JB∗-triples. Then,
as noticed also in [35], Mazur’s theorem on the abundance of smooth points
in every separable Banach space (see for instance [31; Proposition 9.4.3])
implies that separable JB∗-triples with transitive norm are Hilbert spaces
(a joint partial affirmative answer to Problems 1.1 and 2.1). These results
in [35] will be improved in Section 3 (see Corollaries 3.5 and 3.6).

Now assume that X is the predual of a JBW ∗-triple. Given an element
e in S, among the elements f in S(X∗) satisfying f(e) = 1 we can find
tripotents of X∗ (for instance, the so-called support of e [18; p. 75]). It
follows that, if X is smooth, then every element in S(X∗) which attains
its norm is a tripotent. Since the norm attaining elements of S(X∗) are
dense in S(X∗) (by the Bishop-Phelps theorem [4; p. 7]), and the set of
all tripotents of X∗ is closed in X∗, we actually have that, if X is smooth,
then every element in S(X∗) is a tripotent. Now Lemma 2.3 gives us the
following geometric characterization of complex Hilbert spaces among the
preduals of JBW ∗-triples.

PROPOSITION 2.4.- Let X be the predual of a JBW ∗-triple. If X is
smooth, then X is a Hilbert space.

Proposition 2.4 provides us with the following joint partial affirmative
answer to Problem 1.1 and Question 2.2.

COROLLARY 2.5.- Let X be the predual of a JBW ∗-triple. If X is
separable, and if the norm of X is transitive, then X is a Hilbert space.

Recall that the norm of the Banach space X is called almost transitive
if there exists a dense subset D of S such that, for every x, y in D, we can
find F in G satisfying F (x) = y. It is well-known and easy to see that
the norm of X is almost-transitive if and only if, for every e in S the orbit
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G(e) := {F (e) : F ∈ G} is dense in S. Now assume that X is a JB∗-triple.
Since elements of G preserve the triple product of X [24; Proposition 5.4], it
follows from Lemma 2.3 that, if X has a non-zero tripotent, and if the norm
of X is almost transitive, then X is a Hilbert space. As a consequence, we
have the following affirmative answer to a natural variant of Problem 2.1.

COROLLARY 2.6.- Let X be a JBW ∗-triple with almost transitive norm.
Then X is a Hilbert space.

As happens in relation to every mathematical problem which seems to
be difficult to answer, it would be convenient to provide us with some non
trivial reformulations of Problem 2.1. We will obtain such reformulations as
a consequence of the following theorem of F. Cabello. Given a subcategory
J of Banach spaces (see [33; p.161, Definition 9.13]), a J -space will mean
an object of J , and a J -subspace of a J -space X will be a closed subspace
Y of X which is a J -space such that the inclusion Y ↪→ X is a J -morphism.

THEOREM 2.7 [8].- Let J be a subcategory of Banach spaces satisfying
the following two conditions:

a) Given a J -space X and a separable subspace Z of X, there is a J -
subspace of X which is separable and contains Z.

b) Given a J -space X and an increasing sequence {Yn} of J -subspaces
of X, the closure of ∪n∈NYn in X is a J -space.
Then there exists a non-Hilbert separable J -space with almost transitive
norm whenever there is some non-Hilbert J -space with transitive norm.

The fact pointed out above that one-generated closed subtriples of a JB∗-
triple are JB∗-triples leads easily to see that all closed subtriples of a JB∗-
triple also are JB∗-triples. This well-known result is the key tool in verifying
that, if J denotes the category of JB∗-triples, then J satisfies conditions
a) and b) in Theorem 2.7. On the other hand, the class of JB∗-triples is
closed under ultraproducts [14], and it is folklore that, if a Banach space X
has almost transitive norm, then every non trivial (Banach) ultraproduct of
X has transitive norm (see for instance [19; Remark, p. 479]). Therefore we
have

PROPOSITION 2.8.- The following assertions are equivalent:
i) Every JB∗-triple with transitive norm is a Hilbert space.
ii) Every JB∗-triple with almost transitive norm is a Hilbert space.
iii) Every separable JB∗-triple with almost transitive norm is a Hilbert

space.
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3.- Transitivity conditions on the norm of JB∗-triples:
the main results

In this section we will provide affirmative answers to natural variants of
Question 2.2: we will assume that the Banach space X in that question is in
fact the predual of an ”atomic” JBW ∗-triple, but the requirement that the
norm of X is transitive will be substantially relaxed. Recall that the norm
of the Banach space X is called convex transitive if for every e in S we have
coG(e) = B, where co means closed convex hull.

THEOREM 3.1.- Let X be the predual of a JBW ∗-triple. Assume that
B has some extreme point, and that the norm of X is convex transitive.
Then X is a Hilbert space.

Proof.- The convex transitivity of the norm of X and the existence of
extreme points of B imply that X is the closed linear hull of the set of all
extreme points in B, i.e., the JBW ∗-triple X∗ is (purely) atomic. Then,
by [18; Lemma 2.11] there exists a contractive conjugate-linear mapping
π : X → X∗ whose value at each extreme point e of B is the support s(e)
of e. From the obvious uniqueness of such a mapping π it follows that, for
F in G, we have π ◦ F = (F ∗)−1 ◦ π. As a consequence, the equivalent
norm . on X defined by x :=‖ x ‖ + ‖ π(x) ‖ satisfies F (x) = x
for all x in X and F in G. Since the norm of X is convex transitive, it
follows from [12; Theorem 5] that . is a positive multiple of ‖ . ‖ on X,
and therefore we have ‖ x ‖=‖ π(x) ‖ for all x in X. On the other hand, by
[18; Remark 2.8 and the proof of Theorem 1], for every x in X there exist
(possibly finite) sequences {λn} of positive numbers and {en} of extreme
points of B such that ‖ x ‖ =

∑
n λn , the tripotents s(en) are pair-wise

orthogonal (i.e., D(s(en), s(em)) = 0 whenever n 6= m), and x =
∑

n λnen

(conditions which imply ‖ π(x) ‖ = Maxn{λn}). Since we proved that π
is an isometry, it follows that every element in S must be an extreme point
of B. Therefore we have {π(x)π(x)π(x)} =‖ x ‖2 π(x) for all x in X, so
π(X) is a JB∗-subtriple of X∗ (by polarization law [7; p. 251]), and Lemma
2.3 applies.

It follows from Theorem 3.1 that, if X is a JB∗-triple, and if the norm
of X∗ is convex transitive, then X is a Hilbert space. Recall that a subset R
of a topological space T is said to be rare in T if the interior of the closure
of R in T is empty.

THEOREM 3.2.- Let X be the predual of a JBW ∗-triple. Assume that
there exists some non rare set in S consisting only of extreme points of B.
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Then X is a Hilbert space.

Proof.- The assumption on X implies that the JBW ∗-triple X∗ is atomic.
Let π be the contractive conjugate-linear mapping from X to X∗ introduced
in the proof of Theorem 3.1. As we have seen there, given e in S, e is an
extreme point of B if (and only if) ‖ π(e) ‖= 1. Therefore the set U of all
extreme points of B is closed in S. Using again the assumption on X, it
follows that there exists e in S and 0 < ε < 1 such that x lies in U whenever x
is in S and ‖ x−e ‖< ε. Let x be in S with ‖ x−e ‖< ε. Then π(x) and π(e)
are non orthogonal (since ‖ π(x)−π(e) ‖< 1) minimal tripotents in X∗ (since
x and e are extreme points of B and [18; Proposition 4] applies). Therefore,
by [18; Corollary 2.5 and Lemma 1.1], there exists G in G(X∗) satisfying
G(π(x)) = π(e). Since elements in G(X∗) are w∗-continuous (a consequence
of the uniqueness of the predual of X∗), we have G = F ∗ for some F in G, so

π(e) = G(π(x)) = F ∗(π(x)) = π(F−1(x)) ,
and so x = F (e) (since π is injective). In this way we have shown that G(e)
contains the set {x ∈ S : ‖ x− e ‖< ε}. Now let x be an arbitrary element
in S. We can find a finite sequence x0, x1, ..., xn in S with x0 = e, xn = x, and
‖ xi−xi−1 ‖< ε for all i = 1, ..., n. Put k := max{i ∈ {1, ..., n} : xi ∈ G(e)}.
If x does not belong to G(e), then we have k < n, there exists F in G
with F (xk) = e, so ‖ F (xk+1) − e ‖< ε, and so xk+1 belongs to G(e), a
contradiction. Therefore S = G(e), hence the norm of X is transitive, and
Theorem 3.1 applies.

Either from Theorem 3.1 or Theorem 3.2 it follows that, if X is the
predual of a JBW ∗-triple, if the norm of X is almost transitive, and if B
has extreme points, then X is a Hilbert space. We conclude this section
with some corollaries to Theorems 3.1 and 3.2. The first one is a direct
consequence of Theorem 3.1 and the following lemma.

LEMMA 3.3.- Let X be the predual of a JBW ∗-triple. If X∗ has convex
transitive norm, then X has convex transitive norm too.

Proof.- As observed in [12; Lemma 4], a Banach space E has convex
transitive norm if and only if, for every e in S(E) and f in S(E∗), we have

sup{| f(F (e)) | : F ∈ G(E)} = 1 .
Now, the convex transitivity of the norm of X∗ implies

sup{| G(f)(e) | : G ∈ G(X∗)} = 1
for every e in S(X) and f in S(X∗). Since elements in G(X∗) are nothing
but those of the form F ∗ for some F in G, we obtain

sup{| f(F (e)) | : F ∈ G} = 1
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for every e in S(X) and f in S(X∗), hence the norm of X is convex transitive.

COROLLARY 3.4.- Let X be an atomic JBW ∗-triple with convex tran-
sitive norm. Then X is a Hilbert space.

As a consequence, if X is a complex Banach space, and if X∗∗ is a JB∗-
triple with convex transitive norm, then X is a Hilbert space. The fact that
L∞([0, 1]) has convex transitive norm [36] shows that neither the assumption
of almost transitivity of the norm of X in Corollary 2.6 can be relaxed to
that of convex transitivity nor the assumption that X is atomic in Corollary
3.4 can be removed.

COROLLARY 3.5.- Assume that the Banach space X is smooth and that
X∗∗ is a JB∗-triple. Then X is a Hilbert space.

Proof.- The assumption that X is smooth implies that every element
in S(X∗) which attains its norm is an extreme point of B(X∗). By the
Bishop-Phelps theorem and Theorem 3.2, X∗ is a Hilbert space.

COROLLARY 3.6.- Assume that the Banach space X is separable, that
the norm of X is transitive, and that X∗∗ is a JB∗-triple. Then X is a
Hilbert space.

As commented at the beginning of Section 2, Corollaries 3.5 and 3.6
above extend the results proved in [35] for JB∗-triples to the more general
setting of complex Banach spaces whose biduals are JB∗-triples. In Corol-
lary 3.9 below we will provide further information about the transitivity of
the norm on such spaces. For the moment, let X be an arbitrary Banach
space. For e in X, we put ρ(X, e) := max{ρ ≥ 0 : ρB ⊆ coG(e)} .

LEMMA 3.7.- The function ρ(X, .) is continuous on X. More precisely,
for u and v in X, we have | ρ(X, u)− ρ(X, v) |≤‖ u− v ‖.

Proof.- Let u, v be in X. For f in S(X∗), we have
ρ(X, u) ≤ sup{Re[f(F (u))] : F ∈ G} ≤‖ u− v ‖ +sup{Re[f(F (v))] : F ∈ G},
and hence

ρ(X, u) ≤‖ u− v ‖ + inf{ sup{Re[f(F (v))] : F ∈ G} : f ∈ S(X∗) }.
But, by the Hahn-Banach separation theorem, the equality

ρ(X, v) = inf{ sup{Re[f(F (v))] : F ∈ G} : f ∈ S(X∗) }
holds. It follows | ρ(X, u)− ρ(X, v) |≤‖ u− v ‖.

PROPOSITION 3.8.- Assume that the norm of X is transitive, and that
every element in B(X∗∗) is the w∗-limit of a sequence of elements of B.
Then the norm of X∗ is convex transitive.
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Proof.-. Let f be an element in S(X∗) which attains its norm. By the
transitivity of the norm of X, for every x in S, there exists g in the set
{F ∗(f) : F ∈ G} such that g attains its norm at x. Now, the remaining
assumption on X, together with [13; Lemma I.5.10], leads to co{F ∗(f) :
F ∈ G} = B(X∗), so coG(X∗)(f) = B(X∗), and so ρ(X∗, f) = 1. By the
Bishop-Phelps theorem and Lemma 3.7, we actually have ρ(X∗, g) = 1 for
every g in S(X∗), i.e., the norm of X∗ is convex transitive.

COROLLARY 3.9.- Assume that the norm of X is transitive, that X∗∗ is
a JB∗-triple, and that every element in B(X∗∗) is the w∗-limit of a sequence
of elements of B. Then X is a Hilbert space.

Proof.- Apply Proposition 3.8 and Theorem 3.1.

Banach spaces whose biduals are JB∗-triples have been systematically
studied in [17] (see also [11]). However, we have not found in the litera-
ture any example showing that the enlargement of the class of JB∗-triples
provided by such spaces is strict. In what follows we give such an example.

EXAMPLE 3.10.- Let Y be the C∗-algebra of all compact operators on an
infinite-dimensional complex Hilbert space, so that Y is an M -embedded Ba-
nach space [22; Example III.1.4.(f)] in the sense of [22; Definition III.1.1.(a)].
By [22; Proposition III.2.10.(b)], there exists a complex Banach space X and
a surjective linear isometry F : X∗ → Y ∗ which is not the transpose of a
linear isometry from Y onto X. We claim that X cannot be linearly isomet-
ric to Y . Indeed, if X is linearly isometric to Y , then X is an M -embedded
Banach space, and we can argue as in the proof of [22; Proposition III.2.2]
to obtain that F ∗ = G∗∗ for some linear isometry G from Y onto X, and
hence F = G∗, a contradiction. Now, the situation is that Y is a JB∗-triple,
Y ∗∗ is a Cartan factor, X∗∗ is linearly isometric to Y ∗∗, but X is not lin-
early isometric to Y . It follows from [6; Lemma 3.2] that X cannot be a
JB∗-triple.

The argument in the above example actually shows that, for every non
reflexive Cartan factor Z, there exists a complex Banach space X which is
not a JB∗-triple and satisfies X∗∗ = Z. Given a non negative integer number
n, we could consider the class Jn of complex Banach spaces whose n-th dual
is a JB∗-triple, obtaining in such a way increasing sequences {J2p−2}p≥1 and
{J2p−1}p≥1 of classes of Banach spaces whose first terms are the one of JB∗-
triples and that of preduals of JBW ∗-triples, respectively. However, since for
every Banach space X, X∗ is the range of a contractive projection on X∗∗∗,
and the class of JB∗-triples is closed by passing to ranges of contractive
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projections ([26], [34]), it follows from Example 3.7 that the actual situation
is the following:

J0 ⊂ J2 = J4 = ... = J2p = ... and J1 = J3 = . . . = J2p−1 = ... .
Therefore, as we have done along this paper, among the classes Jn , only
J0 ,J1 , and J2 deserve to be considered.

4.- Transitivity conditions on the norm of C∗-algebras

The results obtained in Sections 2 and 3 for JB∗-triples automatically
get a stronger form when they are applied to C∗-algebras. The reason lies
in the folklore fact that C is the unique C∗-algebra whose C∗-norm derives
from an inner product. (Indeed, from the continuous functional calculus for
a single self-adjoint element of a C∗-algebra, it follows that, if X is a smooth
C∗-algebra, then every norm-one element e in the self-adjoint part Xsa of X
satisfies either e2 = e or e2 = −e, which implies that S(Xsa) is disconnected,
and hence the real Banach space Xsa is one-dimensional.) By the folklore
result just mentioned, an affirmative answer to Problem 2.1 would imply
the verification of Wood’s conjecture [36] that, if L is a locally compact
Hausdorff topological space such that C0(L) has transitive norm, then L is
a singleton. Actually, if Problem 2.1 had an affirmative answer, then the
natural conjecture that C is the unique (non necessarily commutative) C∗-
algebra with transitive norm would be right. We note also that the category
J of C∗-algebras is closed under ultraproducts and satisfies conditions a)
and b) in Theorem 2.7.

Let us say that a C∗-algebra is proper whenever it is different from C. It
follows from the above comments that the existence of a proper C∗-algebra
with transitive norm is equivalent to the existence of a proper C∗-algebra
with almost transitive norm, and implies the existence of a separable proper
C∗-algebra with almost transitive norm. Accordingly to previous comments
in Section 2, a proper C∗-algebra with transitive norm must be non sep-
arable, and a proper C∗-algebra with almost transitive norm cannot have
non-zero self-adjoint idempotents. In the next proposition we character-
ize the transitivity of the norm of a C∗-algebra in purely algebraic terms.
Such a characterization will follow from the Kadison-Paterson-Sinclair de-
termination of surjective linear isometries on C∗-algebras [28], and becomes
the non-commutative generalization of [20; Proposition 4.2]. The reader is
referred to the books [15], [29], and [32] for basic results in the theory of
C∗-algebras.

Let X be a C∗-algebra, and let M(X) denote the C∗-algebra of mul-
tipliers of X. The so called Jordan ∗-automorphisms of X, as well as the
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operators of left multiplication on X by unitary elements in M(X), be-
come distinguished examples of surjective linear isometries on X. Jordan
∗-automorphisms of X are nothing but linear bijections from X to X pre-
serving the C∗-involution and the squares. Consequently, if Pos(X) denotes
the set of all positive elements in X, and if F is a Jordan ∗-automorphism
of X, then we have F (S ∩ Pos(X)) = S ∩ Pos(X). Let us denote by U
the set of all unitary elements of M(X), and by G+ the group of all Jordan
∗-automorphisms of X. The Kadison-Paterson-Sinclair theorem asserts that
every surjective linear isometry on X is the composition of an element of G+

with the operator of left multiplication by an element of U . The modulus
| x | of an element x of X is defined as the unique positive square root of
x∗x.

PROPOSITION 4.1.- Let X be a C∗-algebra. Then the following asser-
tions are equivalent:

i) The norm of X is transitive.
ii) G+ acts transitively on S ∩Pos(X), and every element x in X has a

”polar decomposition” x = u | x |, where u is in U .

Proof.- Assume that the norm of X is transitive. Then, for p, q in the
set S ∩ Pos(X) there exist F in G+ and v in U such that q1/2 = vF (p1/2),
and hence we have q = F (p1/2)v∗vF (p1/2) = (F (p1/2))2 = F (p). Therefore
G+ acts transitively on S ∩ Pos(X). On the other hand, for every x in S
we can find G in G+ and u in U such that x = uG(x∗x), which implies
x∗x = (G(x∗x))2, and hence G(x∗x) =| x |. Now assume that assertion ii)
holds. For x, y in S, we can write x = u | x | and y = v | y | for suitable
elements u, v in U , and there exists F in G+ such that F (| x |) =| y |. Then
the mapping G : z → vF (u∗z) from X to X is a surjective linear isometry
satisfying G(x) = y.

Now, we pass to provide a characterization of C∗-algebras with convex
transitive norm, which extends the one in [36; Theorem 3.3] for the com-
mutative case. Let X be a W ∗-algebra. It is well-known that the predual
X∗ of X is an X-bimodule in a natural way. Indeed, if v belongs to X,
and if g is in X∗ , then it is enough to define vg and gv as the (automati-
cally w∗-continuous) linear functionals on X given by (vg)(x) := g(xv) and
(gv)(x) := g(vx), respectively, for all x in X.

LEMMA 4.2.- Let X be a C∗-algebra. Then the set
{uf : f ∈ Pos(X∗) ∩ S(X∗), u ∈ U}

is norm-dense in S(X∗).
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Proof.- Let h be in S(X∗), and let 0 < ε < 2. Since B(M(X)) is
the closed convex hull of U (by the Russo-Dye theorem [4; Theorem 30.2]),
there exists v in U such that | 1−h(v) |< ε2

16 . By the Bishop-Phelps-Bollobás
theorem [4; Theorem 16.1], there are elements x and g in S(X∗∗) and S(X∗),
respectively, satisfying ‖ x−v ‖< ε

2 , ‖ g−h ‖< ε
2 , and g(x) = 1. Put u := v∗

and f := xg. Then u belongs to U , f belongs to Pos(X∗)∩S(X∗) (because,
if 1 denotes the unit of X∗∗, then 1 = g(x) = (xg)(1) = f(1) ≤‖ f ‖=
=‖ xg ‖≤‖ x ‖‖ g ‖= 1), and

‖ h− uf ‖≤‖ h− x∗f ‖ + ‖ (x∗ − u)f ‖=‖ h− g ‖ + ‖ (x∗ − u)f ‖
≤‖ h− g ‖ + ‖ x∗ − u ‖=‖ h− g ‖ + ‖ x− v ‖< ε .

Let X be a C∗-algebra. The extreme points of the w∗-compact convex
set Pos(X∗)∩B(X∗) are zero and the so called (normalized) pure states of
X. It is well-known that pure states of X are extreme points of B(X∗).

THEOREM 4.3.- Let X be a C∗-algebra. Then X has convex transitive
norm if and only if, for every pure state g of X and every norm-one posi-
tive linear functional f on X, g belongs to the w∗-closure in X∗ of the set
{F ∗(f) : F ∈ G+}.

Proof.- Assume that X has convex transitive norm. Then, by the Hahn-
Banach theorem, for every ϕ in S(X∗) the equality

B(X∗) = w∗
co{G∗(ϕ) : G ∈ G}

holds. Let g be a pure state of X, and f a norm-one positive linear functional
on X. It follows from [3; Theorem 36.10] that g belongs to the w∗-closure
of {G∗(f) : G ∈ G}. Therefore there exist nets {uα} and {Fα} in U and
G+, respectively, such that {f(uαFα(x))} → g(x) for all x in X. Let h be
a w∗-cluster point in B(X∗) of the net {F ∗α(f)}. To prove that g belongs
to the w∗-closure of the set {F ∗(f) : F ∈ G+} it is enough to show that
h = g. Let x = x∗ be in X. Then, by the Cauchy-Schwarz inequality, we
have

| f(uαFα(x)) |2≤ f(u∗αuα)f(Fα(x)2) = f(1)f(Fα(x2)) = F ∗α(f)(x2) ,
and hence g(x)2 ≤ h(x2). Note that this inequality implies ‖ h ‖= 1. Let
{xλ} be an increasing approximate unit for X bounded by one. Then {xλ}
converges to 1 in the w∗-topology of X∗∗, so 0 ≤ h((1−xλ)2) ≤ h(1−xλ)→0,
and so h(x2

λ) → 1. Now, for ρ in R, we have
ρ2 + 2ρg(x) + g(x)2 = lim{g(ρxλ + x)2}

≤ lim{h((ρxλ + x)2)} = ρ2 + 2ρh(x) + h(x2) ,
and therefore 2ρ(g(x)− h(x)) ≤ h(x2)− g(x)2. Since ρ is arbitrary in R, it
follows g(x)− h(x) = 0, and hence h = g, as required.
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Now assume that, for every pure state g of X and every f in the set
Pos(X∗)∩S(X∗), g belongs to the w∗-closure of {F ∗(f) : F ∈ G+}. Let .
be an equivalent norm on (the Banach space of) X such that G ⊆ G(X, . ).
Then, for g and f as above, the dual norm . is constant on {F ∗(f) :F ∈G+},
so that our assumption implies g ≤ f . As a consequence, . is constant
(say equal to M) on the set of pure states of X. Now, for every f in
Pos(X∗)∩S(X∗), the inequality M ≤ f holds. But the converse inequality
is also true because the set {h ∈ X∗ : h ≤ M} is w∗-closed and convex
and contains all extreme points of B(X∗) ∩ Pos(X∗), and hence, by the
Krein-Milman theorem, it also contains B(X∗) ∩ Pos(X∗). Since, for u in
U , the mapping G : x → xu from X to X is an element of G, for every
f in Pos(X∗) ∩ S(X∗) we have uf = G∗(f) = f = M . It follows
from Lemma 4.2 that the dual norm . is constant on S(X∗). Therefore
the norm . on X is a positive multiple of the original norm. Finally, the
convex transitivity of the norm of X follows from the already applied result
in [12; Theorem 5].

Our concluding goal in this section is to prove that the Calkin algebra [10]
has convex transitive norm. As far as we know, this becomes the first known
example of a non commutative C∗-algebra whose norm is convex transitive.
We recall that the Calkin algebra is defined as the quotient L(H)/K(H),
where H is an infinite-dimensional separable complex Hilbert space, L(H)
denotes the C∗-algebra of all bounded linear operators on H, and K(H)
stands for the closed ideal of L(H) consisting of all compact operators on
H.

LEMMA 4.4.- Let X be a C∗-algebra, let x be in X, and let y, z be in
B(M(X)). Then yxz belongs to the closed convex hull of G(x).

Proof.- The set {t ∈ M(X) : tx ∈ coG(x)} is closed and convex in
M(X), and contains U . By the Russo-Dye theorem, it also contains y. Now
the closed convex set {t ∈ M(X) : yxt ∈ coG(x)} contains U , hence it
contains z.

In what follows H will denote an infinite-dimensional separable complex
Hilbert space. For x in L(H), we put ‖ x ‖ess:=‖ x + K(H) ‖.

THEOREM 4.5.- Let X denote the C∗-algebra L(H), and let x be in S.
Then coG(x) = B if and only if ‖ x ‖ess= 1.

Proof.- Let π be a self-adjoint idempotent in X whose range is an infinite-
dimensional subspace of H. Then there exists u in X satisfying u∗u = 1 and
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uu∗ = π, and hence 1 = u∗πu. By Lemma 4.4, 1 belongs to coG(π), and,
since B = coG(1) (by the Russo-Dye theorem), we actually have B = coG(π).

Now, let x be in S ∩ Pos(X) such that ‖ x ‖ess= 1. Let 0 < ε < 1. By
the spectral decomposition for x (see for instance [21; Proposition 4.2.3]),
there are pair-wise orthogonal self-adjoint idempotents π1, ..., πn in X and
real numbers λ1, ..., λn such that ‖ x −

∑n
i=1 λiπi ‖ ≤ ε . We may

assume that there exists a positive integer k ≤ n such that π1, ..., πk have
infinite-dimensional range, πk+1, ..., πn have finite-dimensional range, and
| λ1 |≥| λj | for all j = 2, ..., k . Then we have
| λ1 | = ‖

∑k
i=1 λiπi ‖ ≥ ‖ x−

∑n
i=k+1 λiπi ‖ − ‖ x−

∑n
i=1 λiπi ‖

≥ ‖ x ‖ess − ε = 1− ε .
On the other hand, if we put v :=

∑n
i=1 λiπi , then we have π1v = λ1π1 ,

hence, by Lemma 4.4, λ1π1 belongs to coG(v). By the first paragraph in the
proof, the inclusion λ1B ⊆ coG(v) holds. With the notation before Lemma
3.7, this means ρ(X, v) ≥| λ1 |. It follows from Lemma 3.7 that

ρ(X, x) ≥ ρ(X, v)− ‖ x− v ‖≥| λ1 | −ε ≥ 1− 2ε .
By letting ε → 0, we obtain ρ(X, x) = 1, i.e., B = coG(x).

Now, let x be in S such that ‖ x ‖ess= 1. Then x∗x lies in S∩Pos(X) and
‖ x∗x ‖ess= 1. By the second paragraph in the proof, we have B = coG(x∗x),
and, by Lemma 4.4, also B = coG(x). This concludes the proof of the ”if”
part in the theorem.

To prove the ”only if” part, first note that K(H) is a G-invariant subspace
of X (see for instance [22; Proposition III.2.2]), so that, if Y denotes the
Calkin algebra, and if P : X → Y is the quotient mapping, then every F in
G gives rise to an element F̂ in G(Y ) satisfying P ◦F = F̂ ◦P . Then it follows
easily that, if x is in S, and if B = coG(x), then B(Y ) ⊆ coG(Y )(P (x)), and
therefore ‖ x ‖ess=‖ P (x) ‖= 1.

COROLLARY 4.6.- The Calkin algebra has convex transitive norm.

Proof.- Let us take the notation in Theorem 4.5 and its proof. Let y
be in S(Y ). Since K(H) is proximinal in X [22; Proposition II.1.1], there
exists x in S such that P (x) = y, and therefore ‖ x ‖ess= 1. By Theorem
4.5, for such an x we have B = coG(x). Finally, since K(H) is G-invariant,
the equality B(Y ) = coG(Y )(y) holds.

5.- Transitivity conditions on the norm of JB-algebras

JB-algebras are defined as those Jordan-Banach real algebras X satisfy-
ing ‖ x ‖2≤‖ x2 + y2 ‖ for all x, y in X. A natural example of a JB-algebra
is the Banach space X of all self-adjoint operators on a complex Hilbert
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space, when we define the Jordan product x.y of elements x, y in X as
x.y := 1

2(xy + yx). Other examples are provided by the real Banach alge-
bras CR

0 (L), with L a locally compact Hausdorff topological space. Actually
these last Banach algebras are the unique associative JB-algebras [21; 3.2.2].
JB-algebras are closely related to JB∗-triples. Indeed, if X is a JB-algebra,
and if we define a triple product on X by {xyz} := (x.y).z+(y.z).x−(x.z).y,
then (X, {...}) can be regarded as a closed real subtriple of a suitable JB∗-
triple (cf. [21; 3.3.9], [37], and [5]).

Let X be a JB-algebra with a unit 1. If u is an element in X satisfying
u2 = 1, then we say that u is a symmetry in X. Central symmetries in X
are characterized as the isolated points of the set of all extreme points of
B [23; Proposition 1.3]. It follows that the orbit G(1) is contained in the
centre of X. Therefore we have

PROPOSITION 5.1.- Let X be a JB-algebra with a unit 1. If the lin-
ear hull of G(1) is dense in X (for instance, if the norm of X is convex
transitive), then X is associative.

JBW -algebras (see [21; 4.1.1] for a definition) can actually be charac-
terized as those JB-algebras which are Banach dual spaces [21; 4.4.16]. If
X is a JBW -algebra, then X has a unit [21; 4.1.7], and the product of X is
separately w∗-continuous [21; 4.4.16 and 4.1.6].

PROPOSITION 5.2.- Let X be the predual of a JBW -algebra. If X has
no non trivial G-invariant closed subspaces (for instance, if the norm of X
is convex transitive), then X∗ is associative.

Proof.- Assume that X∗ is not associative. Then, denoting by 1 the
unit of X∗, the linear hull of G(X∗)(1) is not w∗-dense in X∗. Therefore
there exists a non-zero element x in X such that (G(X∗)(1)(x) = 0. As a
consequence, for every F in G we have 1(F (x)) = 0, and hence the closed
linear hull of G(x) is a non trivial G-invariant closed subspace of X.

Let X be a JB-algebra. Then the bidual X∗∗ of X is a JBW -algebra
containing X as a subalgebra [21; 4.4.3], and the set

M(X) := {z ∈ X∗∗ : z.X ⊆ X}
is a subalgebra of X∗∗ [16] called the multiplier algebra of X. According
to the Kadison type theorem in [23], every surjective linear isometry on X
is the composition of an algebra automorphism of X with the operator of
multiplication by a central symmetry in M(X). Recall that an element x in
X is said to be positive if there exists y in X such that y2 = x.
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THEOREM 5.3.- Let X be a JB-algebra. If there exists a norm-one
positive element p in X such that the convex hull of G(p) is dense in B (for
instance, if the norm of X is convex transitive), then X is associative.

Proof.- Recall that a JBW -factor is a JBW -algebra with no non trivial
central idempotents, and that a factor representation of X is an algebra
homomorphism from X to some JBW -factor Y , whose range is w∗-dense
in Y . Assume that there exists some norm-one positive element p in X
such that coG(p) = B. Since the family of all factor representations of X is
faithful [21; 4.6.4], to prove that X is associative it is enough to show that
every factor representation of X has 1-dimensinal range. Let Φ : X → Y
be such a factor representation. By [21; 4.6.2], we may assume that Y is
equal to e.X∗∗ for some minimal central idempotent in X∗∗, and that Φ is
nothing but the mapping x → e.x . Let x be in G(p). Then there exists an
algebra automorphism F of X and a central symmetry u in M(X) such that
x = u.F (p), and hence x = u.q for some norm-one positive element q in X.
Now 1

2(1 + u) is a central idempotent in X∗∗, so that, since e is a minimal
central idempotent in X∗∗, we have either (1 + u).e = 0 or (1 + u).e = 2e,
and hence either Φ(x) = −e.q or Φ(x) = e.q . Since x is arbitrary in G(p),
the above shows that, if P denotes the set of all positive elements in B(Y ),
then Φ(G(p)) is contained in P ∪ (−P ). Since P is convex and w∗-compact,
co(P ∪(−P )) is w∗-compact and hence norm-closed in Y . Since coG(p) = B,
it follows that Φ(B) is contained in co(P ∪ (−P )). By [21; 3.4.2 and 3.4.3],
for y in Φ(X) with ‖ y ‖< 1 there exists x in X satisfying ‖ x ‖< 1
and Φ(x) = y, and therefore the closed unit ball of Φ(X) is contained in
co(P ∪ (−P )). Since Φ(X) is w∗-dense in Y , we may apply the Kaplansky
density theorem [21; 4.5.12] to obtain that co(P ∪ (−P )) = B(Y ). As a
consequence, if z is an extreme point of B(Y ), then z lies in P ∪ (−P ).
Since such a z is a symmetry in Y (= e.X∗∗) [23; Lemma 1.2], we have that
either z = e or z = −e. It follows from the Krein-Milman theorem that
Y = Re.

It has been proved recently that, if L is a locally compact Hausdorff
topological space, and if CR

0 (L) has almost transitive norm, then L is a
singleton [20; Theorem 3.1]. Therefore we have

COROLLARY 5.4.- R is the unique JB-algebra with almost transitive
norm.

It follows from Theorem 5.3 and Proposition 5.2 that the question of
convex transitivity of the norm on JB-algebras and preduals of JBW -
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algebras reduces to the consideration of a similar question on the classi-
cal Banach spaces CR

0 (L) (for locally compact Hausdorff topological spaces
L) and LR

1 (Γ, µ) (for localizable measure spaces (Γ, µ)), respectively. The
reader is referred to [36] for the CR

0 (L) case. As far as we know, the con-
vex transitivity of the norm for LR

1 (Γ, µ) spaces has not been systematically
studied. For the particular case of the almost transitivity of the norm on
such spaces, the reader is referred to [19].
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